India's Leading Dust Control Standards and Guidelines

In India, the Central Pollution Control Board (CPCB) and respective state pollution control boards are responsible for the formulation, publishing, and regulating of the dust control standards in India. The CPCB sets guidelines and standards for dust emissions from various industries and activities, and state pollution control boards are responsible for enforcing these regulations.

The Air (Prevention and Control of Pollution) Act, 1981, and the Water (Prevention and Control of Pollution) Act, 1974 are the main legislation that governs dust suppression in India. These acts give the CPCB and state pollution control boards the authority to set standards for dust emissions and to enforce compliance with these standards.

The CPCB has set guidelines for the control of dust emissions from construction and demolition activities, roads, and thermal power plants. These guidelines include measures such as regular water sprinkling, use of dust suppressant chemicals, and proper management of waste materials.

Dust suppression regulations in India are often not strictly enforced and there is a lack of monitoring and enforcement mechanisms in many cases. Non-compliance with regulations is a common issue and it's important to raise awareness and create a culture of compliance with the regulations.

Below are the few important dust suppression regulations and Standards in India for M 10 and PM 2.5 types of respirable dust.

1. Pollution Norms

2. Sample Scheme to be executed

3. Methodology of checking

4. Scope of work

Also please include the following items

  1. What are the CPCB norms for dust emission (for belt conveyors and other emissions)
  2. What is the methodology to give a Performance Guarantee? Mechanism to measure the dust norms (24-hour period and other norms)
  1. Detailed scope of work

CPCB Norms


1.1 Continuous Emissions Monitoring – Systems and Benefits Emission measurement and monitoring by Continuous Emissions Monitoring Systems (CEMS) have been in practice across the globe for a long time. The CEMS is basically an electronic device, that is capable of capturing electronic signals, e.g. in milliamps (mA), and they are collected and stored in a data logger. CEMS has been used for pollutants other than particulate matter in the first major emissions trading program, the acid rain program in the US, and CEMS for PM has been used for monitoring concentration-based requirements in other settings. However, this specification focuses on the use of PM CEMS with reference to the use of this data as the basis for an emissions trading scheme. Thus attempts have been made to document issues and aspects of Particulate Matter CEMS (PM-CEMS) in stationary industrial sources.

Introduction to PM CEMS 

The technology behind continuous emissions monitoring systems for particulate matter (PM CEMS)

has been developed since the 1960s when PM CEMS was first used in Germany. In the 1970s, the

use of PM CEMS became a federal requirement in Germany, and particulate matter concentrations

began to be correlated to opacity meter readings in the United States. Since that time, various

regulatory standards for PM CEMS have been developed in different countries, each of which has

been designed for the specific needs and objectives of the regulator. Nevertheless, all these standards

share a common broad protocol designed to ensure that the underlying objective of reliable

emissions monitoring is achieved. Some of these standards include the US EPA performance

specification (PS-11), various European specifications including the BS-EN 14181 and BS-EN 14182,

and country standards by the TUV (Germany) and MCERTS (United Kingdom).


PM CEMS Technology 

Concurrent with their increasing use in various regulatory and industrial contexts, different

technologies have been developed to make quantitative measurements of particulate matter

concentrations or loads in smokestacks. Different physical principles are commonly used as the basis

of measurement today and these include (i) light scattering, (ii) probe electrification, (iii) light

extinction, and (iv) optical scintillation. A less common technology that is sometimes used in special

conditions is (v) beta attenuation.

Light scattering, extinction, and scintillation-based devices rely on changes in the optical properties of

stack gas as the concentration of particles increases. Probe electrification relies on changes in

the generated charge in a probe due to moving particles in the gas stream. Over the years, multiple

studies have been carried out on the performance and characteristics of all these technologies and

some of this history is available from the references to this document (USEPA, 2000).

A characteristic that is common to all of these technologies (with the exception of beta attenuation)

is that they are based on indirect measurement principles and therefore require calibration to smoke

stack conditions before use. Thus calibration of a particulate CEMS device is a central part of all

performance specifications including this one. This calibration in 2 all cases involves a comparison of

the continuous emissions monitoring device to standard gravimetric sampling techniques that are in

use all over the world today. For this same reason, the process of calibration is largely technology-independent. In a sense, therefore, PM CEMS can be viewed as an extension of existing manual

sampling techniques where technology is used to move from a one-time measurement of particulate

matter pollutants in the stack to a continuous measure.

Benefits of PM CEMS 

There are many clear benefits to continuous recording of particulate emissions as opposed to manual

stack sampling at specified intervals. These include:

Real-Time Information 

Manual stack sampling provides no information on particulate emissions in the intervals between

monthly monitoring. However actual emissions may vary quite widely in real time as a function of

operating processes, the operational status of air pollution control devices (APCD), fuel type and

quality, and so on. For this reason, it is impossible to accurately estimate total emissions from any

given industry (or group of industries) in a region from occasional stack sampling. This is a major

drawback, especially in critically and severely polluted areas where even small increases in pollutant

load can be a major health concern.

Load Standards

PM CEMS data enables the use of load standards instead of concentration standards as the basis for

regulating stationary source emissions. In many situations, load standards have a number of

important advantages over concentration standards, especially because health and environmental

concerns are normally influenced by the mass or volume (in the case of effluents) of pollutants

emitted and not directly by the concentration. A higher pollution load will normally translate into

higher ambient concentrations while a limit on the concentration of emissions may still allow for a high

total load to be emitted (through an increase in operating hours, stack volume, or the number of

stacks in an area). In addition, while load standards often make more environmental sense than

concentration standards, they also increase the number of options the industry has available in order to

comply with regulations. For instance, total load can be reduced by decreasing operating hours.

However, this is not a helpful option for an industry attempting to comply with concentration


Transparency and Openness 

The use of PM CEMS technologies presents industries, regulators, and potentially the public with high

quality, ongoing information on emissions from each source so equipped. In turn, this means that

regulation based on this data is also transparent and clear, industries can predict and be aware of the

costs of compliance and plan accordingly, and the public at large obtains the best possible

information on the environmental performance of regulated units and the total emissions load in an area

(from regulated stationary sources).

3Market Based Regulatory Mechanisms 

PM CEMS can enable the implementation of market-based regulation, by providing an accurate record of

emissions over time.

Market-based regulatory mechanisms such as emissions trading provide a number of benefits to

industry. The principal advantage is that emission reductions can be made at lower cost. Under cap

and trade for instance (a form of emissions trading), only the total emissions load from a number of

industries is fixed but individual units are free to trade emission permits amongst each other such

that reductions are undertaken by those units for whom it is cheapest to do so. This flexibility can

significantly reduce overall costs. In addition, since a cap and trade is based on a load standard the

benefits of regulating load vs. concentration also carry over to industry. Perhaps the most important

of these advantages is the ability of PM CEMS to enable the accurate measurement of total mass

load of emissions which is the critical quantity involved in emissions trading schemes. Indeed, it

would be reasonable to argue that to use PM CEMS only as a support to concentration standards is

to severely underutilize the information content of time series data. An important opportunity that is

opened up for regulators using PM CEMS is the ability to measure and therefore regulate total mass

emitted over a period of time, a quantity that cannot be reliably estimated using one-time stack

sampling. This document primarily describes how to use PM CEMS in order to support a market-based regulatory mechanism (emissions trading scheme) targeting total particulate load.

Nevertheless, the guidelines and specifications provided here will also enable the use of PM CEMS to

strengthen existing systems of monitoring concentration standards.

1.2 Pilot Emissions Trading Scheme for Particulate Matter 

Introduction to Emissions Trading Emissions trading schemes (ETS) have been applied to a variety of

pollutants around the world in order to guarantee environmental outcomes while minimizing

compliance costs. In an ETS, the regulator sets the overall quantity of emissions for a specified area

but does not decide what any particular source will emit. Industrial plants and other polluters, rather

than being prescribed a fixed emissions limit or concentration standard as an individual unit, face a

price for their emissions and choose how much to emit, subject to the overall limit set by the

regulator, taking this price into account. Under ETS, firms have the flexibility to design their own

compliance strategy—emissions reduction through technology adoption or upgradation, or

allowance purchases/sales—to minimize their compliance costs.

The five main areas for the successful implementation of ETS are:

  1. Setting the Cap. The target for aggregate emissions from the sector where trading is

introduced must be set to produce reasonable prices and emissions reductions.

  1. Allocating Permits. The permits to emit must be distributed in an equitable way to build

support for the scheme.

  1. Trading. Permits are based on the total quantity of emissions rather than concentrations

and have a time duration that is set by the regulator. 4

  1. Monitoring. The quantity of emissions from each industrial plant must be reliably and

continuously monitored with high integrity recognized by all sides.

  1. Compliance. The regulatory framework must make industries confident that buying

Permits are the only reliable way to meet environmental obligations.

Global Experience with ETS 

The US EPA pioneered such trading under the Clean Air Act to limit a variety of common air

pollutants beginning in 1974 (Stavins, 2003). The landmark Acid Rain program applied the cap-and-

trade model to sulfur dioxide pollution, achieving sharp reductions in emissions at lower-than-expected costs. In recent decades, environmental trading programs have proliferated in the

European Union, Canada, and increasingly in developing Asia. China has a nascent sulfur dioxide

market as well as a trading market in CO2 and has been testing market-based policies jointly with the

US EPA since 1999 (Yang and Schreifels, 2003; Schreifels, Fu and Wilson, 2012). Indian industries

trade in Renewable Energy Certificates and, via the Clean Development Mechanism, Certified

Emissions Reductions (CER) for Carbon Dioxide. In 2012, the Indian government’s Bureau of Energy

Efficiency (BEE) launched a trading scheme based on energy consumption to encourage greater

efficiency in energy-intensive industrial sectors.

In this context, the Ministry of Environment & Forests, the Central Pollution Control Board and the

State Pollution Control Boards of the states of Gujarat, Maharashtra and Tamil Nadu have come

together to design and pilot an emissions trading scheme for particulate matter air pollution from

industrial point sources. Particulates are the most severe air pollution problem in India, with most

major cities and many industrial areas out of compliance with the National Ambient Air Quality

Standards for SPM (NAAQS) (CPCB, 2010; CPCB 2011). The model of industrial development in

tightly clustered industrial estates results in industrial combustion being the key source of particulate

pollution in many areas, though transport emissions have also grown rapidly (CPCB, 2009; CPCB

2011). The emissions trading scheme (ETS) will be piloted in several such large industrial areas to

reduce emissions and to provide a working example of emissions trading in India for a critical local air


The Role of PM CEMS in the ETS pilot.

As noted above, a solid monitoring framework to provide reliable and high-quality emissions data

forms the foundation of any successful trading program. It is worth noting that in an ETS there are

two aspects of data quality that are of key importance.

Measurement accuracy

For emissions trading, it is important to have an accurate measurement of the quantity of interest, in

this scheme total load of PM emissions over a set period of time. Some existing ETS have utilized

input-based methods for estimating total emissions load for pollutants ranging from carbon dioxide

to particulate matter; however, there are significant drawbacks to this method. For instance, input-

based methods of measurement are not reliable for particulates because PM emissions are a

complex function of combustion conditions and abatement technology. Accordingly, such estimation

methods would not reflect emissions reductions that occur after the inlet, such as improved

maintenance of abatement equipment, which can be a low-cost means of achieving reductions for

industry. Therefore it is critical for 5 a trading scheme in PM to measure the particulate emissions at

the outlet of a stack, necessitating the use of a monitoring technology such as CEMS. Measurement

frequency Although in theory, it is possible to extrapolate total emissions from periodic manual

checks, the variations that exist in industry processes and conditions imply that these measures are

highly unreliable as a basis for trading. Therefore having the time series of emissions readings

provided by CEMS technology is necessary to form a more robust and complete measure of total

emissions load, the quantity required for ETS, and that ultimately influences ambient air quality.

ETS schemes implemented to date have monitoring protocols that use some combination of input-

based methods of estimation, CEMS, and/or periodic site audits in order to determine compliance

with the scheme. However, even in schemes where CEMS are used, they are often not mandated for

all regulated entities, and the continuous emissions readings at the industry site are reported to the

regulator on a periodic basis (e.g. quarterly) rather than in real-time. Implementation difficulties in

early programs highlight the importance of having both accurate and high-frequency data on


Building upon this experience, this document outlines a unique performance specification and set of

guidelines for the use of continuous emissions monitoring of particulate matter to support load

monitoring for an emissions trading scheme. In so doing, this document breaks new ground in the

use of modern monitoring technology to support innovative market-based regulations. This

combination represents a significant advance not just in the Indian context, but globally.

1.3 The PM CEMS Monitoring Framework for ETS 

The purpose of this document is to outline the technical and operational requirements of a PM

CEMS-based monitoring framework that provides reliable and accurate data as a foundation for the

pilot particulate matter emissions trading scheme.

The document is broadly divided into three sections that correspond to the key building blocks of

such a system:

∙ Section 2 discusses the technical components, referring to the hardware and software components

that form the basis of the monitoring framework. It also describes the technical specifications and

performance standards that apply to the same.

∙ Section 3 describes the various stakeholders and their roles and responsibilities within the

monitoring framework.

∙ Section 4 then outlines the standard operating procedures that underpin the functioning of the

whole system. These procedures form the linkages between the responsibilities of the various

stakeholders and the specifications and standards required for the smooth implementation of the

monitoring framework for ETS.

These components and linkages are illustrated in Figures 1 and 2 which follow.(Additional to be




 1) Air Quality – (i) Work zone –Standards for Coal Mines issued by MoEF, GSR-742 E dt. 25.09.2000 

(ii) Residential category – National Ambient Air Quality standards issued by CPCB, GSR 176 dt. 


  1. STANDARDS FOR COAL MINES (Stipulated by Ministry of Environment and Forests (MoEF), Vide

Notification No. GSR 742(E), Dt: 25.09.2000)

  1. AIR QUALITY STANDARDS: (a) Standards


Note: -(i) Annual arithmetic mean of 24- hourly / 8- hourly values shall be met 92% of the time in a

year. However, 8% of the time it may exceed but not on two consecutive days.

(ii) In case of residential commercial or industrial place falls within 500 meters of any dust-generating sources, the National Ambient Air Quality Standards shall be made applicable. (b)


(1) Air quality monitoring at a frequency of once a fortnight (24 hourly sampling) at the identified

locations near the dust-generating sources.

(2) As a result of monthly monitoring, if it is found that the concentration of the pollutants is less

than 50% of the specified standards for three consecutive months, then the sampling frequency

may be shifted to two days in a quarter year.

(3) In case the value has exceeded the specified standards, the air quality sampling shall be done

twice a week. If the results of four consecutive weeks indicate that the concentration of pollutants

is within the specified standards, then fortnightly monitoring may be reverted.

© 2021 All Rights Reserved | Synergy Spray Systems | Powered by Ingenium Digital
How can I help you?